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Abstract

This article presents a new class of distances between arbitrary
nonnegative Radon measures inspired by optimal transport. These
distances are defined by two equivalent alternative formulations: (i) a
dynamic formulation defining the distance as a geodesic distance over
the space of measures (ii) a static “Kantorovich” formulation where the
distance is the minimum of an optimization problem over pairs of cou-
plings describing the transfer (transport, creation and destruction) of
mass between two measures. Both formulations are convex optimiza-
tion problems, and the ability to switch from one to the other depend-
ing on the targeted application is a crucial property of our models. Of
particular interest is the Wasserstein-Fisher-Rao metric recently intro-
duced independently by [7, 15]. Defined initially through a dynamic
formulation, it belongs to this class of metrics and hence automatically
benefits from a static Kantorovich formulation.

1 Introduction

Optimal transport is an optimization problem which gives rise to a popular
class of metrics between probability distributions. We refer to the mono-
graph of Villani [28] for a detailed overview of optimal transport. A major
constraint of the resulting transportation metrics is that they are restricted
to measures of equal total mass (e.g. probability distributions). In many
applications, there is however a need to compare unnormalized measures,
which corresponds to so-called unbalanced optimal transport problems, fol-
lowing the terminology introduced in [2]. Applications of these unbalanced
metrics range from image classification [27, 21] to the processing of neuronal
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activation maps [11]. This class of problems requires to precisely quantify
the amount of transportation, creation and destruction of mass needed to
compare arbitrary positive measures. While several proposals to achieve this
goal have been made in the literature (see below for more details), to the
best of our knowledge, there lacks a coherent framework that enables to deal
with generic measures while preserving both the dynamic and the static per-
spectives of optimal transport. It is precisely the goal of the present paper
to describe such a framework and to explore its main properties.

1.1 Previous work

In the last few years, there has been an increasing interest in extending
optimal transport to the unbalanced setting of measures having non-equal
masses.

Dynamic formulations of unbalanced optimal transport. Several
models based on the fluid dynamic formulation introduced in [3] have been
proposed recently [19, 18, 22, 23]. In these works, a source term is introduced
in the continuity equation. They differ in the way this source is penalized or
chosen. We refer to [7] for a detailed overview of these models.

Static formulations of unbalanced optimal transport. Purely static
formulations of unbalanced transport are however a longstanding problem. A
simple way to address this issue is given in the early work of Kantorovich and
Rubinstein [14]. The corresponding “Kantorovich norms” were later extended
to separable metric spaces by [13]. These norms handle mass variations by
allowing to drop some mass from each location with a fixed transportation
cost. The computation of these norms can in fact be re-casted as an ordi-
nary optimal transport between normalized measures by adding a point “at
infinity” where mass can be sent to, as explained by [12]. This reformulation
is used in [11] for applications in neuroimaging. A related approach is the
so-called optimal partial transport. It was initially proposed in the computer
vision literature to perform image retrieval [27, 21], while its mathematical
properties are analyzed in detail by [6, 9]. As noted in [7] and recalled in
Section 5.1, optimal partial transport is tightly linked to the generalized
transport proposed in [22, 23] which allows a dynamic formulation of the
optimal partial transport problem. The contributions in [22] were inspired
by [2] where it is proposed to relax the marginal constraints and to add an
L2 penalization term instead.
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Wasserstein-Fisher-Rao metric and relation with recent work. A
new metric between measures of non equal masses has recently and indepen-
dently been proposed by [7, 15]. This new metric interpolates between the
Wasserstein W2 and the Fisher-Rao (also known as Hellinger) metrics. It
is defined through a dynamic formulation, corresponding formally to a Rie-
mannian metric on the space of measures, which generalizes the formulation
of optimal transport due to Benamou and Brenier [3].

In [7], we proved existence of geodesics, presented the limit models (for
extreme values of mass creation/destruction cost) and proposed a numerical
scheme based on first order proximal splitting methods. We also thoroughly
treated the case of two Dirac masses which was the first step towards a
Lagrangian description of the model. This metric is the prototypical example
for the general framework developed in this article. It thus enjoys both a
dynamic formulation and a static one (Sect. 5.2).

1.2 Contribution

The initial motivation of this article is studying of the Wasserstein-Fisher-
Rao (WFR) metric. For two non-negative densities ρ0, ρ1 on a domain
Ω ⊂ Rd it is informally obtained as

WFR2(ρ0, ρ1)
def.
= inf

(ρ,v,α)

∫ 1

0

∫
Ω

(
1

2
|vt(x)|2 +

1

2
gt(x)2

)
dρt(x) dt (1.1)

where (ρt)t∈[0,1] is a time-dependent density that interpolates between ρ0

and ρ1, (vt)t∈[0,1] is a velocity field that describes the movement of mass and
(gt)t∈[0,1] a scalar field that models local growth and destruction of mass.
They must together satisfy (distributionally) the continuity equation with
source

∂tρt +∇ · (ρt vt) = ρt gt. (1.2)

In Section 2, we generalize this model and look at a wider family of
dynamic problems given by

CD(ρ0, ρ1) = inf
(ρ,v,α)

∫ 1

0

∫
Ω
f
(
x, ρt(x), vt(x) · ρt(x), gt(x) · ρt(x)

)
dx dt (1.3)

where the infimum is again taken over solutions of (1.2). Here, for (ρ, v, g) ∈
R+×Rd×R, f(x, ρ, v ·ρ, g ·ρ) gives the infinitesimal cost of moving a particle
of mass ρ at x in direction v while undergoing an infinitesimal scaling by
the (signed) rate of growth g. Note that in the two last arguments of f we
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multiply v and α by ρ. This corresponds to the velocity to momentum change
of variables proposed in [3] to obtain a convex problem. We show that this
problem admits a dual formulation (Proposition 2.7) and allows to define
geodesic metrics on the space of nonnegative measures (Proposition 2.10).

Our main goal in this article is to propose a Kantorovich-like formula-
tion for this family of problems, where the time variable is removed. This
requires to adapt the definitions as done in Section 3. We introduce a new
Kantorovich-like class of static problems of the form

CK(ρ0, ρ1) = inf
(γ0,γ1)

∫
Ω×Ω

c(x, γ0(x, y), y, γ1(x, y)) dx dy (1.4)

where (γ0, γ1) are two semi-couplings between ρ0 and ρ1, describing analo-
gously to standard optimal transport, how much mass is transported between
any pair x, y ∈ Ω. Two semi-couplings are required, to be able to describe
changes of mass during transport. The function c(x0,m0, x1,m1) determines
the cost of transporting a quantity of mass m0 from x0 to a (possibly dif-
ferent) quantity m1 at x1. It is a crucial assumption of our approach that
c(x, ·, y, ·) is jointly positively 1-homogeneous and convex in the two mass
arguments. This ensures that (1.4) can be rigorously defined as an opti-
mization problem over measures and that the resulting problem is convex.
A dual problem is established (Proposition 3.11). Analogous to standard
optimal transport, when c induces a metric over pairs of location and mass,
then (1.4) defines a metric over the space of nonnegative measures (Theorem
3.7).

In Section 4, under suitable assumptions on f , we establish equivalence
between (1.4) and (1.3) when c is chosen to be the minimal path cost induced
by f (Theorem 4.3 and Proposition 4.2). This is our main result, which is
analogous to the Benamou-Brenier formula for classical optimal transport.

Finally, we apply those results to two unbalanced optimal transport mod-
els. Section 5.1 introduces a dynamic formulation and gives duality results
for a family of metrics obtained from the optimal partial transport problem.
This is reminiscent of — and generalizes — the results in [23, 22]. The case
of the WFR metric is treated in Section 5.2. In Section 5.3, it is shown
how standard static optimal transport is obtained as a limit (in the sense
of Γ-convergence) of the WFR metric, thus complementing a previous result
of [7] obtained for dynamic formulations.
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1.3 Relation with [16, 17]

After completing this paper, we became aware of the independent work of
[16, 17]. In these two papers the authors develop and study a similar class
of “static” transportation-like problems as here. This huge body of work
contains many theoretical aspects that we do not cover. For instance mea-
sures defined over more general metric spaces are considered, while we work
over Rd. The construction of [16] defines three equivalent static formulations.
Their third “homogeneous” formulation is closely related (by a change of vari-
ables) to our “semi-couplings” formulation. Their first formulation gives an
intuitive and nice interpretation of this class of convex programs as a modifi-
cation of the original optimal transportation problem where one replaces the
hard marginal constraints by soft penalization using Csiszár f -divergences.
The dual of this first formulation is related to the dual of our formulation by
a logarithmic change of variables, see Corollary 5.9. Quite interestingly, the
same idea is used in an informal and heuristic way by [10] for applications in
machine learning, where soft marginal constraints is the key to stabilize nu-
merical results. The authors of [16, 17] study dynamical formulations in the
Wasserstein-Fisher-Rao setting (that they call the “Hellinger-Kantorovich”
problem). This allows them to make a detailed analysis of the geodesic
structure of this space. In contrast, we study a more general class of dynam-
ical problems, but restrict our attention to the equivalence with the static
problem. Another original contribution of our work is the proof of the met-
ric structure (in particular the triangular inequality) for static and dynamic
formulations when the underlying cost over the cone manifold Ω × R+ is
related to a distance.

1.4 Preliminaries and notation

We denote by C(X) the Banach space of real valued continuous functions on
a compact set X ⊂ Rd endowed with the sup norm topology. Its topological
dual is identified with the set of Radon measures, denoted by M(X) and
the dual norm onM(X) is the total variation, denoted by | · |TV . Another
useful topology on M(X) is the weak* topology arising from this duality:
a sequence of measures (µn)n∈N weak* converges towards µ ∈ M(X) if and
only if for all u ∈ C(X), limn→+∞

∫
X udµn =

∫
X udµ. According to that

topology, C(X) andM(X) are topologically paired spaces (the elements of
each space can be identified with the continuous linear forms on the other),
this is a standard setting in convex analysis. We also use the following
notations:
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• M(X) is the vector space of Radon measures andM+(X) the cone of
nonnegative Radon measures;

• µ � ν means that the Rm-valued measure µ is absolutely continuous
w.r.t. the positive measure ν. We denote by µ

ν ∈ (L1(X, ν))m the
density of µ with respect to ν;

• Ffr a (possibly vector) measure µ, |µ| ∈ M+(X) is its variation;

• T#µ is the image measure of µ through the measurable map T : X1 →
X2, also called the pushforward measure. It is given by T#µ(A2)

def.
=

µ(T−1(A2));

• δx is a Dirac measure of mass 1 located at the point x;

• ιC is the (convex) indicator function of a convex set C which takes the
value 0 on C and +∞ everywhere else;

• if (E,E′) are topologically paired spaces and f : E → R ∪ {+∞}
is a convex function, f∗ is its Legendre transform i.e. for y ∈ E′,
f∗(y)

def.
= supx∈E〈x, y〉 − f(x);

• for n ∈ N and a tuple of distinct indices (i1, . . . , ik), il ∈ {0, . . . , n− 1}
the map

Proji1,...,ik : Ωn → Ωk (1.5)

denotes the canonical projection from Ωn onto the factors given by the
tuple (i1, . . . , ik);

• the truncated cosine is defined by cos : z 7→ cos(|z| ∧ π
2 );

• we denote by f ∧ g the biggest function (or measure) that is smaller
than both f and g. This is to be contrasted with the notation minS
which for a totally ordered set S denotes its smallest element.

2 A Family of Dynamic Problems

In this section, we describe a first approach to unbalanced optimal transport,
which generalizes (1.1) and is inspired by the dynamic formulation of classical
optimal transport. Dynamic formulations of unbalanced transport models
correspond intuitively to the computation of geodesic distances according to
a function measuring the infinitesimal effort needed for “acting” on a mass
ρ at position x according to the speed v and rate of growth g (cf. (1.3)). In
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this section, Ω is the closure of an open, connected, bounded subset of Rd
with Lipschitz boundary.

2.1 Continuity equation

The continuity equation, informally introduced in (1.2), is a key concept for
the dynamic formulations of this article. It enforces a local mass preservation
constraint for a density ρ, a flow field v and a growth rate field g. We now give
a rigorous definition in terms of measures (ρ, ω, ζ) where ω can informally
be interpreted as the momentum ρ · v of the flow field and ζ corresponds to
ρ · g. As opposed to what is standard in the literature, we do not require a
priori ω and ζ to have a density with respect to ρ : this allows to deal with
a wider class of action functionals.

Definition 2.1 (Continuity equation with source). For (a, b) ∈ R2 and a
compact domain Ω ⊂ Rd, denote by CEba(ρ0, ρ1) the affine subset ofM([a, b]×
Ω) × M([a, b] × Ω)d × M([a, b] × Ω) of triplets of measures µ = (ρ, ω, ζ)
satisfying the continuity equation

∂tρ+∇ · ω = ζ

in the distributional sense, interpolating between ρ0 and ρ1 and satisfying
homogeneous Neumann boundary conditions. More precisely we require∫ b

a

∫
Ω
∂tϕ dρ+

∫ b

a

∫
Ω
∇ϕ · dω+

∫ b

a

∫
Ω
ϕ dζ =

∫
Ω
ϕ(b, ·)dρ1 −

∫
Ω
ϕ(a, ·)dρ0

(2.1)
for all ϕ ∈ C1([a, b]× Ω).

Below we collect two simple facts on this equation which will turn out
useful. Their proof only involves elementary operations that we do not re-
produce here for conciseness. The notation Bd(0, r) denotes the open ball of
radius r in Rd centered at the origin.

Proposition 2.2.

Smoothing. Let ε > 0, let rxε , rtε mollifiers supported on the open balls
Bd(0, ε2) and B1(0, ε2) respectively and rε : (t, x) 7→ rtε(t)r

x
ε (x). Let

µ = (ρ, ω, ζ) be a triplet of measures supported on R × Ω such that
µ ∈ CE1

0(ρ0, ρ1), µ = (ρ0, 0, 0) ⊗ dt for t < 0, and µ = (ρ1, 0, 0) ⊗ dt
for t > 1. Then for all a ≤ −ε/2, and b ≥ 1 + ε/2, µ ∗ rε ∈ CEba(ρ0 ∗
rxε , ρ1 ∗ rxε ) on Ω + B̄d(0, ε/2).
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Scaling. Let µ = (ρ, ω, ζ) ∈ CEba(ρa, ρb) with a < b and T : (t, x) 7→
(Tt(t), Tx(x)) be an affine scaling with multiplication factor α and β, re-
spectively. Then (α·T#ρ, β ·T#ω, T#ζ) ∈ CETt(b)Tt(a)((Tx)#(ρa), (Tx)#(ρb))

on the domain Tx(Ω).

2.2 Action minimizing problems

In order to select an interpolation among all the solutions to the continuity
equation, we choose that which minimizes an action functional. A crucial
feature of this action which allows to adapt results from classical optimal
transport theory is 1-homogeneity with respect to mass. It is necessary for
the model to behave similarly for diffuse and discrete measures.

Now, two choices of variables are possible. A first approach is to choose a
Lagrangian function L : Ω×Rd×R→ R which is a function of the position,
the velocity and the rate of growth and to integrate it in space and time to
define the action ∫ 1

0

∫
Ω
L(x, vt(x), gt(x))dρt(x), (2.2)

which directly generalizes (1.1). However, functions built this way are gen-
erally not convex even if L is, nor is the continuity equation an affine con-
straint. This issues are solved if one consider the other set of variables
(ρ, ω, ζ) because (i) the continuity constraint (Definition 2.1) is affine and
(ii) the function L(x, ω/ρ, ζ/ρ)ρ is convex and positively 1-homogeneous if L
is convex (this transformation corresponds to taking the perspective function
of L). In the following, we thus directly consider such convex functions of
(ρ, ω, ζ) that we refer to as infinitesimal costs.

Definition 2.3 (Infinitesimal cost). In this paper, an infinitesimal cost is a
lower semicontinuous function f : Ω× R× Rd × R→ [0,+∞] such that for
all x ∈ Ω, f(x, ·, ·, ·) is convex, positively 1-homogeneous and satisfies

f(x, ρ, ω, ζ)


= 0 if (ω, ζ) = (0, 0) and ρ ≥ 0

∈]0,+∞[ if (ω, ζ) 6= (0, 0) and ρ > 0

= +∞ if ρ < 0 .

It is clear that any continuous, convex Lagrangian defines an infinitesimal
cost and that reciprocally an infinitesimal cost f defines a continuous, convex
Lagrangian L(x, v, g) = f(x, 1, v, g) so the two approaches (starting from a
Lagrangian or an infinitesimal cost) are in fact equivalent.
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Example 2.4. With the choice of Lagrangian L(v, g) = 1
2(|v|2+g2), the asso-

ciated infinitesimal cost f is the lower-semicontinuous relaxation of 1
2(|ω|2/ρ+

ζ2/ρ). This case correspond to the metric WFR. We also study in Section 5
Lagrangians of the form L(v, g) = 1

p |v|
p+ |g| with p > 1, which correspond to

the infinitesimal cost 1
p |ω|

p/ρp−1 + |ζ| and show the connection with optimal
partial transport.

The dynamic formulation is defined as the minimization of an action
defined from the infinitesimal cost f .

Definition 2.5 (Dynamic problem). For (ρ, ω, ζ) ∈M([0, 1]×Ω)1+d+1, let

JD(ρ, ω, ζ)
def.
=

∫ 1

0

∫
Ω
f(x, ρλ ,

ω
λ ,

ζ
λ) dλ(t, x) (2.3)

where λ ∈M+([0, 1]×Ω) is such that (ρ, ω, ζ)� λ. Due to 1-homogeneity of
f , this definition does not depend on the choice of λ. The dynamic problem
is, for ρ0, ρ1 ∈M+(Ω),

CD(ρ0, ρ1)
def.
= inf

(ρ,ω,ζ)∈CE10(ρ0,ρ1)
JD(ρ, ω, ζ) . (2.4)

The expression in (2.3) is quite abstract due to the dummy reference mea-
sure, which allows to deal correctly with the singular parts of the measures,
but it is mainly a rewritting of (2.2) in terms of the variables (ρ, ω, ζ). We
will sometimes make the following restrictive assumptions on the infinitesi-
mal cost f .

(C1) multiplicative dependency on x: there exist continuous functions λi :
Ω→]0,+∞[, i ∈ {1, . . . , N} such that

f(x, ρ, ω, ζ) =

N∑
i=1

λi(x)f̃i(ρ, ω, ζ) . (2.5)

(C2) doubling condition: there exists C > 0 such that f(x, ρ, ω, 2ζ) ≤ C ·
f(x, ρ, ω, ζ), for all (x, ρ, ω, ζ) ∈ Ω× R× Rd × R.

As is shown in the next result, assumption (C2) is enough for the dynamic
cost CD to be finite between any pair of nonnegative measures.
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Proposition 2.6 (Finite cost). Let f be an infinitesimal cost satisfying as-
sumption (C2) and such that f(x, 1, 0, 1) is bounded on Ω. Then for all
(ρ0, ρ1) ∈M+(Ω)2, the dynamic cost (2.4) is finite, i.e. CD(ρ0, ρ1) < +∞.

Proof. Let C be the constant of assumption (C2) and first assume that ρ0 =
0. Define, for some α > 0, the measures ρ = ρ1 ⊗ (tαdt), ω = 0 and
ζ = ρ1 ⊗ (αtα−1dt). By construction (ρ, ω, ζ) ∈ CE1

0(0, ρ1), it only remains
to show that for α big enough this triplet has finite cost. By homogeneity of
f :

JD(ρ, ω, ζ) =

∫ 1

0
tαdt

∫
Ω

dρ1f(x, 1, 0, α/t) .

By convexity, f(x, 1, 0, ·) increases with the module of the last argument, so
with k(t) := dlog2(α/t)e it holds

0 ≤ f(x, 1, 0, α/t) ≤ f(x, 1, 0, 2k(t)) ≤ Ck(t)f(x, 1, 0, 1) ≤ C ′t− log2 C

for some C ′ > 0 which does not depend on t. Consequently, for α > log2C−
1,

CD(0, ρ1) ≤ JD(ρ, ω, ζ) ≤ C ′
∫ 1

0
tα−log2 Cdt

∫
Ω

dρ1 < +∞ .

Remark that the preceding argument works as well when reverting or short-
ening the time interval. Thus, if ρ0 is not the null measure, one builds a
interpolation by first decreasing the mass from ρ0 to 0 for t ∈ [0, 1/2] and
then increasing from 0 to ρ1 for t ∈ [1/2, 1], and the cost of this interpolation
is again finite.

2.3 Properties of dynamic formulations

The dynamic problem enjoys a dual formulation, which is the maximiza-
tion of a linear objective over the set of sub-solutions to a Hamilton-Jacobi
equation. Unlike the dual formulation of classical optimal transport, this
Hamilton-Jacobi equation involves a term of zeroth order. We state here
the proposition in a rather abstract form and explicit examples are given in
Section 5.

Proposition 2.7 (Duality). If f is an infinitesimal cost satisfying assump-
tion (C1) then the minimum of (2.4) is attained. Moreover, denoting B(x)
the polar set of f(x, ·, ·, ·) for all x ∈ Ω, it holds

CD(ρ0, ρ1) = sup
ϕ∈K

∫
Ω
ϕ(1, ·)dρ1 −

∫
Ω
ϕ(0, ·)dρ0 (2.6)
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with K def.
=
{
ϕ ∈ C1([0, 1]× Ω) : (∂tϕ,∇ϕ,ϕ) ∈ B(x), ∀(t, x) ∈ [0, 1]× Ω

}
.

Corollary 2.8 (Sublinearity). As the supremum of continuous linear func-
tionals, CD is a sublinear (i.e. convex, positively 1-homogeneous) and weakly*
lower semicontinuous functional.

Proof. Remark, that (2.6) can be written as

− inf
ϕ∈C1([0,1]×Ω)

F (Aϕ) +G(ϕ)

where A : ϕ 7→ (∂tϕ,∇ϕ,ϕ), is a bounded linear operator from C1([0, 1]×Ω)
to C([0, 1]×Ω)d+2, and F : (α, β, γ) 7→

∫ 1
0

∫
Ω ιB(x)(α(t, x), β(t, x), γ(t, x))dxdt,

G : ϕ 7→
∫

Ω ϕ(0, ·)dρ0 −
∫

Ω ϕ(1, ·)dρ1 are convex, proper and lower-semi-
continuous functionals, in particular because for all x ∈ Ω, the set B(x) is
convex, closed and contains 0Rd+2 . Since we assumed that f(x, ρ, ω, ζ) > 0 if
|ω| > 0 or ζ > 0 and f is continuous as a function of x on the compact Ω, one
can check that there exists ε > 0 such that (−ε, 0, θε/2) ∈ ( int ∩x∈Ω B(x))
for θ ∈ [−1, 1] and thus the function ϕ : t 7→ −εt + ε/2 is such that
F (Aϕ) + G(ϕ) < +∞ and F is continuous at Aϕ. Then, by Fenchel-
Rockafellar duality, (2.6) is equal to

min
µ∈M([0,1]×Ω)d+2

G∗(−A∗µ) + F ∗(µ) .

By Lemma 2.9, we have F ∗ = JD, and by direct computations, G∗ ◦ (−A∗)
is the convex indicator of CE1

0(ρ0, ρ1).

The lower-semicontinuity and duality results in this article rely on the fol-
lowing duality property of integral functionals of measures. It is a rephrasing
of [24, Theorem 6] with simplified assumptions thanks to [4, Lem. A.2].

Lemma 2.9. Let X be a compact metric space and f : X×Rn → R∪{∞} a
l.s.c. function such that for all x ∈ X, fx(·) = f(x, ·) is convex, positively 1-
homogeneous and proper. Then If :M(X)n → R∪ {∞} and If∗ : C(X)n →
R ∪ {∞} defined as

If (µ)
def.
=

∫
X
fx(µλ )dλ and If∗(φ)

def.
=

{
0 if φ(x) ∈ domf(x, ·)∗, ∀x ∈ X,
∞ otherwise

form a pair of convex, proper, l.s.c. conjugates functions, where the topology
considered are the sup-norm topology for C(X)n and the weak* topology for
M(X)n. In the definition of If , λ is any nonnegative measure that dominates
µ.
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An important property of these dynamic unbalanced problems is that
in many cases they define geodesic distances on the space of nonnegative
measures.

Proposition 2.10 (Metric property). Let f be an infinitesimal cost such
that f(x, 1, 0, 1) is bounded on Ω. If for all x ∈ Ω, the function Lx : (v, g) 7→
f(x, 1, v, g) is positively p-homogeneous (for some p > 1) and symmetric with
respect to the origin then C1/p

D is a metric and (M+(Ω), C
1/p
D ) is a geodesic

metric space.

Proof. Let ρ0, ρ1 ∈ M+(Ω). It is clear that CD(ρ0, ρ1) is finite by Proposi-
tion 2.6. The symmetry property comes from the symmetry of Lx and the
fact that (ρ, ω, ζ) ∈ CE1

0(ρ0, ρ1)⇔ (ρ,−ω,−ζ) ∈ CE1
0(ρ1, ρ0). It is clear that

CD(ρ0, ρ0) = 0 and conversely, if CD(ρ0, ρ1) = 0, then ω = ζ = 0 which
implies ρ0 = ρ1. Finally, the triangle inequality follows from equation (2.7)
in Lemma 2.11 below, which also proves that any pair of points can be joined
by a constant speed minimizing geodesic.

Lemma 2.11 (Constant speed minimizers). Let f be an infinitesimal cost
such that f(x, 1, 0, 1) is bounded on Ω. If for all x ∈ Ω, the function
Lx : (v, g) 7→ f(x, 1, v, g) is positively p-homogeneous (for some p > 1), then
minimizers (ρ, ω, ζ) of the dynamic problem of Definition 2.5 can be disinte-
grated in time w.r.t. Lebesgue and satisfy CD(ρs, ρt) = |t − s|CD(ρ0, ρ1) for
all 0 ≤ s < t ≤ 1. Moreover, one has for any T > 0

CD(ρ0, ρ1)1/p = inf

{∫ T

0

(∫
Ω
f(x, ρtλt ,

ωt
λt
, ζtλt )dλt

)1/p

dt

}
(2.7)

where the infimum runs over (ρt, ωt, ζt)t∈[0,1] ∈ CET0 (ρ0, ρ1) and λt is a
dummy reference measure that dominates ρt, ωt and ζt for all t ∈ [0, T ].

Proof. By Proposition 2.6, we know that CD(ρ0, ρ1) is always finite. More-
over, since Lx is superlinear, any feasible triplet (ρ, ω, ζ) satisfies ω, ζ � ρ
from which we can deduce that ρ admits a disintegration in time with respect
to the Lebesgue measure on [0, 1] (this comes from the fact that ζt(Ω) is the
distributional derivative of t 7→ ρt(Ω)). Let us denote by C̃ the infimum
in (2.7), taken with T = 1 (the fact that this value does not change with
T is a consequence of a simple rescaling argument). One may argue exactly
as in [8, Thm. 5.4] to show the inequality CD ≤ C̃. The reverse inequal-
ity follows from Hölder inequality and is exact if and only if the integrand
equals CD(ρ0, ρ1) dt-a.e. for any minimizer (ρt, ωt, ζt)t∈[0,1]. This constant
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speed property, combined with the fact that (ρ, ω, ζ), after time rescaling,
remains minimizing between any pair of intermediate times 0 ≤ s < t ≤ 1
(otherwise one could improve the action on [0, 1] by glueing), leads to the
constant speed property.

The main goal of this article is to formulate a Kantorovich-like formula-
tion for problems of this kind. This aim requires to introduce a new definition
of static optimal transport problems, and this is the object of the next sec-
tion. The relationship between these two classes of models is stated and
proved in Section 4.

3 Static Kantorovich Formulations

The classical Kantorovich formulation of optimal transport, for two probabil-
ity measures µ, ν on a set X and with a transport cost c : (x, y) 7→ R∪{∞},
is

inf

{∫
X2

c(x, y)dγ(x, y) ; γ ∈M+(X2), (Proj0)#γ = µ and (Proj1)#γ = ν

}
.

A nonnegative measure on X2 that satisfies the marginal constraints is called
a coupling of µ and ν. If now µ and ν have different total masses, two issues
arise: (i) the set of couplings between µ and ν is empty and (ii) the cost needs
also to describe the effort necessary to make the mass vary. We propose in
this section a generalized Kantorovich problem that is valid for arbitrary
nonnegative measures.

3.1 Definitions

In what follows, Ω ⊂ Rd is a compact set, x typically refers to a point in X
and m to a mass. We first define a cost function, which takes as input not
only two points in space but also two masses: it can be though of as the cost
of matching two Dirac measures of arbitrary mass.

Definition 3.1 (Cost function). In the sequel, a cost function is a function

c :
(Ω× [0,+∞[)2 → [0,+∞]
(x0,m0), (x1,m1) 7→ c(x0,m0, x1,m1)

which is l.s.c. in all its arguments and jointly sublinear in (m0,m1). It is
implicitly defined as +∞ outside of its domain of definition.

13



A sublinear function is by definition a positively 1-homogeneous and
subadditive function, or equivalently, a positively 1-homogeneous and convex
function. The joint subadditivity of c in (m0,m1) guarantees that it is always
better to send mass from one point to another in one single chunk. This
sublinearity requirement can be interpreted as the generalization of the fact
that, in classical optimal transport, the cost of moving mass is linear with
the mass.

In order to allow for variations of mass, we need to adapt the con-
straint set of standard optimal transport by introducing the notion of semi-
couplings. These are relaxed couplings with only one marginal being fixed.

Definition 3.2 (Semi-couplings). For two marginals ρ0, ρ1 ∈ M+(Ω), the
set of semi-couplings is

Γ(ρ0, ρ1)
def.
=
{

(γ0, γ1) ∈
(
M+(Ω2)

)2
: (Proj0)#γ0 = ρ0, (Proj1)#γ1 = ρ1

}
.

(3.1)

Informally, γ0(x, y) represents the amount of mass that is taken from
ρ0 at point x and is then transported to an (possibly different, to account
for creation/destruction) amount of mass γ1(x, y) at point y of ρ1. These
semi-couplings allow us to formulate a novel static Kantorovich formulation
of unbalanced optimal transport as follows.

Definition 3.3 (Unbalanced Kantorovich problem). For a cost function c
we introduce the functional

JK(γ0, γ1)
def.
=

∫
Ω2

c
(
x, γ0γ , y,

γ1
γ

)
dγ(x, y) , (3.2)

where γ ∈ M+(Ω2) is any measure such that γ0, γ1 � γ. This functional is
well-defined since c is jointly 1-homogeneous w.r.t. the mass variables (see
Definition 3.1). The corresponding optimization problem is

CK(ρ0, ρ1)
def.
= inf

(γ0,γ1)∈Γ(ρ0,ρ1)
JK(γ0, γ1) . (3.3)

Proposition 3.4. If c is a cost function then a minimizer for CK(ρ0, ρ1)
exists.

Proof. By Lemma 2.9, JK is weakly* l.s.c. on M(Ω2). Since Ω is compact
and the marginals ρ0, ρ1 have finite mass, Γ(ρ0, ρ1) is tight and thus weakly*
pre-compact. It is also closed so Γ(ρ0, ρ1) is weakly* compact and any min-
imizing sequence admits a cluster point which is a minimizer (the minimum
is not assumed to be finite).
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Example 3.5. Standard optimal transport problems with a nonnegative,
l.s.c. cost c̃ are retrieved as particular cases, by taking

c(x0,m0, x1,m1) =

{
m0 · c̃(x, y) if m0 = m1 ,

+∞ otherwise.

This example shows that, unlike the dynamic problems of the previous
section, these semi-coupling formulations form a proper generalization of
the Kantorovich problems. In particular, the properties that we prove next
(duality, metric) can be particularized to recover well-known properties of
classical optimal transport. Other examples, in particular the WFR-metric,
are studied in more detail in Section 5.

3.2 Properties of semi-coupling problems

A central property of optimal transport is that it can be used to lift a metric
from the base space Ω to the space of probability measures over Ω (cf. [29,
Chapter 6]). We now show that this extends to the unbalanced framework.
We first introduce the space Cone(Ω), a standard construction in topology
which, in our context, can be understood as the space of Dirac measures of
arbitrary mass (endowed with the weak* topology).

Definition 3.6 (Cone). The space Cone(Ω) is defined as the space Ω× R+

where all the points with zero mass Ω× {0} are identified to one point. It is
endowed with the quotient topology (note that subtleties appear in the non-
compact setting, see [16]).

Theorem 3.7 (Metric). Let c be a cost function such that, for some p ∈
[1,+∞[

(x0,m0), (x1,m1) 7→ c(x0,m0, x1,m1)1/p (3.4)

is a metric on Cone(Ω). Then C1/p
K defines a metric onM+(Ω).

Remark 3.8. Compatibility with the cone structure implies in particular
that for all x2 ∈ Ω, m ≥ 0, c(x1, 0, x2,m) must be independent of x1 ∈ Ω
and c(x1, 0, x2, 0) = 0.

Remark 3.9. One can replace the word “metric” by “extended metric” (i.e.
allowing the value +∞) and the proof goes through. By considering the cost
in Example 3.5, a corollary is that C1/p

K defines a proper metric on each
equivalence class for the relation µ ∼ ν ⇔ µ(Ω) = ν(Ω). The metric property
of the Wasserstein distance is thus recovered as a particular case.
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Proof. First, symmetry and nonnegativity are inherited from c. Moreover,

[CK(γ0, γ1) = 0]⇔
[∃(γ0, γ1) ∈ Γ(ρ0, ρ1) : (γ0 = γ1) and (x = y γ0-a.e.)]

⇔ [ρ0 = ρ1].

It remains to show the triangle inequality. Fix ρ0, ρ1, ρ2 ∈M+(Ω). Take
two pairs of minimizers for (3.3)

(γ01
0 , γ01

1 ) ∈ Γ(ρ0, ρ1) , (γ12
0 , γ12

1 ) ∈ Γ(ρ1, ρ2) ,

and let µ ∈M+(Ω) be such that (Proj1)#(γ01
0 , γ01

1 )� µ and (Proj0)#(γ12
0 , γ12

1 )�
µ. Denote by (γ01

i |µ)(x|y) the disintegration of γ01
i along the second factor

w.r.t. µ. More precisely, for all y ∈ Ω, (γ01
i |µ)(·|y) ∈ M+(Ω) and it holds,

for all f measurable on Ω2,∫
Ω2

f dγ01
i =

∫
Ω

(∫
Ω
f(x, y) d(γ01

i |µ)(x|y)

)
dµ(y)

and analogously for (γ12
i |µ)(z|y) along the first factor for i = 0, 1. Write

ρ1
µ (y) for the density of ρ1 w.r.t. µ. We combine the optimal semi-couplings
in a suitable way to define γ0, γ1, γ̂ ∈ M(Ω3) (via disintegration w.r.t. µ
along the second factor):

(γ0|µ)(x, z|y)
def.
=


(γ010 |µ)(x|y)⊗(γ120 |µ)(z|y)

ρ1
µ (y)

if ρ1µ (y) > 0,

(γ01
0 |µ)(x|y)⊗ δy(z) otherwise,

(γ1|µ)(x, z|y)
def.
=


(γ011 |µ)(x|y)⊗(γ121 |µ)(z|y)

ρ1
µ (y)

if ρ1µ (y) > 0,

δy(x)⊗ (γ12
1 |µ)(z|y) otherwise,

(γ̂|µ)(x, z|y)
def.
=


(γ011 |µ)(x|y)⊗(γ120 |µ)(z|y)

ρ1
µ (y)

if ρ1µ (y) > 0,

0 otherwise.

The interpretation of γ0 is that all mass that leaves x towards y, according to
γ01

0 (x, y), is distributed over the third factor according to γ12
0 (y, z). In case

the mass disappears at y, it is simply “dropped” as δy on the third factor.
Then γ1 is built analogously for the incoming masses and γ̂ is a combination
of incoming and outgoing masses. For i = 0, 1 let γ02

i
def.
= (Proj02)#γi and

note that, by construction, (γ02
0 , γ02

1 ) ∈ Γ(ρ0, ρ2). In the rest of the proof, for

16



an improved readability, when writing the functional the dummy measure γ
such that γ0, γ1 � γ is considered as implicit and we write∫

Ω2

c
(
x, γ0(x, y), y, γ1(x, y)

)
dx dy for

∫
Ω2

c
(
x, γ0γ , y,

γ1
γ

)
dγ(x, y) .

With this notation, one has∫
Ω3

c
(
x, γ0(x, y, z), y, γ̂(x, y, z)

)
dx dy dz

=

∫
ρ(y)>0

(∫
Ω2

c
(
x, (γ01

0 |µ)(x|y), y, (γ01
1 |µ)(x|y)

)(γ12
0 |µ)(y|z)
ρ
µ(y)

dx dz

)
dµ(y)

+

∫
ρ(y)=0

(∫
Ω2

c
(
x, (γ01

0 |µ)(x|y), y, 0
)
δy(z)dx dz

)
dµ(y)

=

∫
Ω

(∫
Ω
c
(
x, (γ01

0 |µ)(x|y), y, (γ01
1 |µ)(x|y)

)
dx

)
dµ(y)

= JK(γ01
0 , γ01

1 ) = CK(ρ0, ρ1) ,

and analogously∫
Ω3

c
(
y, γ̂(x, y, z), z, γ1(x, y, z)

)
dx dy dz = CK(ρ1, ρ2) .

One finally obtains

CK(ρ0, ρ2)
1
p ≤

(∫
Ω2

c
(
x, γ02

0 (x, z), z, γ02
1 (x, z)

)
dx dz

) 1
p

(1)

≤
(∫

Ω3

c
(
x, γ0(x, y, z), z, γ1(x, y, z)

)
dx dy dz

) 1
p

(2)

≤
(∫

Ω3

[
c
(
x, γ0(x, y, z), y, γ̂(x, y, z)

) 1
p +

c
(
y, γ̂(x, y, z), z, γ1(x, y, z)

) 1
p

]p
dx dy dz

) 1
p

(3

≤
(∫

Ω3

c
(
x, γ0(x, y, z), y, γ̂(x, y, z)

)
dx dy dz

) 1
p
+(∫

Ω3

c
(
y, γ̂(x, y, z), z, γ1(x, y, z)

)
dx dy dz

) 1
p

(4)
= CK (ρ0, ρ1)

1
p + CK (ρ1, ρ2)

1
p
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where we used (1) the convexity of c, (2) the fact that c1/p satisfies the
triangle inequality, (3) Minkowski’s inequality and (4) comes from the com-
putations above. Thus CK(·, ·)1/p satisfies the triangle inequality, and is a
metric.

Let us now give a dual formulation of the problem. It is similar to the
dual formulation of the Kantorovich problem where one maximizes

∫
φdρ0 +∫

ψdρ1 over the set of pairs of continuous functions (φ, ψ) on Ω that satisfy
φ(x) +ψ(y) ≤ c(x, y). Here the objective is the same, but the constraint set
is generally not a linear constraint set and is modified as follows.

Definition 3.10 (Dual contraint set). The dual constraint set Q : Ω2 →
2R×R is a set valued function defined, for all (x, y) ∈ Ω2 as the polar set to
the function c(x, ·, y·), i.e. the domain of its convex conjugate.

Remember that since the cost function c is jointly 1-homogeneous, con-
vex, and l.s.c. in the variables (m0,m1), for all (x, y) ∈ Ω2, the Legendre
transform of c(x, ·, y, ·) is the indicator of a closed convex set. Moreover, as
c is nonnegative, and worth +∞ if m0 or m1 is negative, the latter contains
the negative orthant. We now state the dual problem (note that we do not
attempt to prove the existence of dual maximizers).

Proposition 3.11 (Duality). Let c be a cost function, Q the associated dual
constraint set from Definition 3.10 and let

B =
{

(φ, ψ) ∈ C(Ω)2 : ∀(x, y) ∈ Ω2, (φ(x), ψ(y)) ∈ Q(x, y)
}
.

Then
CK(ρ0, ρ1) = sup

(φ,ψ)∈B

∫
Ω
φ(x)dρ0 +

∫
Ω
ψ(y)dρ1

Corollary 3.12 (Sublinearity). As the supremum of continuous linear func-
tionals, CK is a sublinear (i.e. convex, positively 1-homogeneous) and weakly*
lower semicontinuous functional onM(Ω)2.

Proof. Let us rewrite the supremum problem as

sup
(u0,u1)∈(C(Ω2)2

−F (u0, u1)−G(u0, u1)

where

G : (u0, u1) 7→


−
∫

Ω φ(x)dρ0 −
∫

Ω ψ(y)dρ1 if u0(x, y) = φ(x)

and u1(x, y) = ψ(y)

+∞ otherwise,
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and F is the indicator of {(u0, u1) ∈ (C(Ω2)2) : (u0, u1)(x, y) ∈ Q(x, y), ∀(x, y) ∈
Ω2}. Note that F and G are convex and proper. Also, given our assump-
tions, there is a pair of functions (u0, u1) at which F is continuous (for the
sup norm topology) and F and G are finite since for all (x, y) ∈ Ω2, Q(x, y)
contains the negative orthant. Then Fenchel-Rockafellar duality theorem
(see, e.g. [28, Theorem 1.9]) states that

sup
(u0,u1)∈C(Ω2)2

−F (u0, u1)−G(u0, u1) = min
(γ0,γ1)∈M(Ω2)2

{F ∗(γ0, γ1) +G∗(−γ0,−γ1)} .

(3.5)
Let us compute the Legendre transforms. For G, we obtain

G∗(−γ0,−γ1) = sup
(φ,ψ)∈C(Ω)2

−
∫

Ω2

φ(x)dγ0 −
∫

Ω2

ψ(x)dγ1 +

∫
Ω
φ(x)dρ0 +

∫
Ω
ψ(y)dρ1

=

{
0 if (γ0, γ1) ∈ Γ

+/−
ρ0,ρ1

+∞ otherwise.

where Γ
+/−
ρ0,ρ1 is the set of semi-couplings without the non-negativity con-

straint. On the other hand, by Lemma 2.9,

F ∗(γ0, γ1) =

∫
Ω2

c
(
x, γ0γ , y,

γ1
γ

)
dγ(x, y)

where γ is any measure in M+(Ω2) with respect to which (γ0, γ1) is abso-
lutely continuous. Finally, as F ∗ includes the nonnegativity constraint, the
right hand side of (3.5) is equal to min(γ0,γ1)∈Γ(ρ0,ρ1) JK(γ0, γ1).

4 From Dynamic to Static Problems

In the previous sections, we have introduced and studied basic properties
of two categories of unbalanced optimal transport problems: dynamic for-
mulations and semi-coupling formulations. In this section, we prove (Theo-
rem 4.3) that any dynamic problem is equivalent to a semi-coupling problem.
We put ourselves back in the setting of Section 2 where Ω is the closure of
an open, connected, bounded subset of Rd with Lipschitz boundary.

4.1 Minimal path cost and convexification

Any infinitesimal cost f defines a cost function on Ω × R+ obtained by
minimizing over absolutely continuous trajectories.
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Definition 4.1 (minimal path cost). The minimal path cost associated to
the Lagrangian L is, for (xi,mi) ∈ Ω× R+ with i ∈ {0, 1},

cf (x0,m0, x1,m1)
def.
= inf

x(t),m(t)

∫ 1

0
f(x(t),m(t),m(t)x′(t),m′(t)) dt (4.1)

where the infimum runs over absolutely continuous paths t 7→ (x(t),m(t))
that link (x0,m0) to (x1,m1).

In general, cf does not define a cost function in the sense of Definition
3.1 because of a possible lack of convexity, but its convex regularization does
so. This convex relaxation can be nicely expressed as the minimal path cost
obtained by allowing mass to be split in two “travelling” Dirac masses.

Proposition 4.2 (properties and convexification). Assume that properties
C1 and C2 hold for the infinitesimal cost f . Then the minimal path cost cf
is finite and continuous on (Ω × R+)2. Morevoer, its convex regularization
c̃f is an admissible cost function, is continuous, and characterized by

c̃f (x0,m0, x1,m1) = min
ma

0+mb
0=m0

ma
1+mb

1=m1

cf (x0,m
a
0, x1,m

a
1) + cf (x0,m

b
0, x1,m

b
1) .

(4.2)

Proof. The argument of the proof of Proposition 2.6 shows that cf is finite
on its domain. It is also continuous since one can perturb a path and reach
nearby points with a perturbed cost (thanks to assumption C1). As for c̃f ,
it is clear that it takes values in [0,∞] and that it inherits 1-homogeneity
from f , so c̃f (x, ·, y·) is sublinear for all (x, y). Moreover, characterization
is a consequence of Carathéodory’s Theorem [25, Corollary 17.1.6] (one can
also check directly that is it valid for (m0,m1) = (0, 0) although this is not
part of the cited result). The infimum is attained because cf is continuous
and the minimization set is compact. Finally, the continuity of c̃f is clear
from this characterization and the continuity of cf .

4.2 Main Theorem

We can now state our main theorem, which connects the dynamic and the
semi-coupling formulations of unbalanced optimal transport.

Theorem 4.3. Let Ω ⊂ Rd be a compact which is star shaped w.r.t. a set of
points with nonempty interior, and f be an infinitesimal cost satisfying (C1)
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and (C2). Defining c̃f the convex relaxation of the minimal path cost (as in
Proposition 4.2) as the static cost, it holds, for ρ0, ρ1 ∈M+(Ω),

CD(ρ0, ρ1) = CK(ρ0, ρ1).

The assumption on the domain includes convex sets but also most star-
shaped sets. This particular assumption comes from the fact that our proof
strategy involves a smoothing step that needs to deal correctly with the
dependency in x of the infinitesimal cost f .

Proof of Theorem 4.3. The proof is divided into three steps: in Step 1, we
show, using discrete approximations of semi-couplings, that it holds CK ≥
CD. By integrating characteristics (an argument similar to the original proof
of the Benamou-Brenier formula [3]), we show in Step 2 that for absolutely
continuous marginals, CK is upper bounded by the dynamic minimization
problem restricted to smooth fields. In Step 3, a regularization argument,
inspired by [28, Theorem 8.1], extends this result to general measures and
shows that CK ≤ CD.

Step 1. Let (ρ0, ρ1) ∈ M+(Ω)2 and let (γ̂
(n)
0 ), let (γ̂

(n)
1 ) be the atomic

measures on Ω2 given by Lemma 4.4 below (the continuity of h follows from
Proposition 4.2): they are such that limn→∞ JK(γ̂

(n)
0 , γ̂

(n)
1 ) = CK(ρ0, ρ1).

Also denote by (ρn0 , ρ
n
1 )

def.
= ((Proj0)#γ̄

(n)
0 , (Proj1)#γ̄

(n)
1 ) the corresponding

marginals, that satisfy ρn0 ⇀∗ ρ0 and ρn1 ⇀ ρ1.
From the definition of cf and by characterization (4.2) of c̃f one has that

c̃f (x0,m0, x1,m1) ≥ CD(m0δx0 ,m1δx1). It follows, taking the notations of
the proof of Lemma 4.4,

JK(γ̂
(n)
0 , γ̂

(n)
1 ) =

∑
i∈I

c̃f (xi, f
(n)
i , yi, g

(n)
i )γ

(n)
i

≥
∑
i∈I

CD(f
(n)
i γ

(n)
i δxi , g

(n)
i γ

(n)
i δyi) ≥ CD(ρn0 , ρ

n
1 ).

Since by Corollary 2.8, CD is weakly l.s.c., it follows CD(µ, ν) ≤ CK(µ, ν).

Step 2. Let ρ0, ρ1 ∈M+(Ω) be absolutely continuous measures with pos-
itive mass and let

(ρ, ω, ζ) ∈
{

(ρ, ω, ζ) ∈ CE1
0(ρ0, ρ1) : ωρ ,

ζ
ρ ∈ C

1([0, 1]× Ω)
}
.
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One can take the Lagrangian coordinates (ϕt(x), λt(x)) which are given by
the flow of the smooth fields (v

def.
= ω/ρ, g

def.
= ζ/ρ) (see [20, Prop. 3.6]) :

∂tϕt(x) = vt(ϕt(x)) and ∂tλt(x) = gt(ϕt(x))λt(x) ,

with the initial condition (ϕ0(x), λ0(x)) = (x, 1). The Neumann boundary
conditions on v, included in the continuity equation, imply that for all t ∈
[0, 1], Ω is stable by ϕt. Recall that (ϕt(x), λt(x)) describes the position and
the relative increase of mass at time t of a particle initially at position x and
that one has ρt = (ϕt)#(λt · ρ0). It follows

JD(ρ, ω, ζ) =

∫
[0,1]×Ω

f
(
x, 1, vt(x), gt(x)

)
d[(ϕt)∗

(
λtρ0

)
](x)dt

(1)
=

∫
Ω

[∫ 1

0
f
(
ϕt(x), 1, ∂tϕt(x), ∂tλt(x)/λt(x)

)
λt(x)dt

]
dρ0(x)

(2)
=

∫
Ω

[∫ 1

0
f
(
ϕt(x), λt(x), λt(x)(∂tϕt(x)), ∂tλt(x)

)
dt

]
dρ0(x)

(3)

≥
∫

Ω
cf (x, 1, ϕ1(x), λ1(x))dρ0(x)

(4)

≥ CK(ρ0, ρ1)

where we used (1) the change of variables formula (2) homogeneity of f (3)
the definition of the minimal path cost cf and (4) the fact that

(
(id, ϕ1)#ρ0,

(id, ϕ1)#(λ1ρ0)
)
∈ Γ(ρ0, ρ1) and cf ≥ c̃f .

Step 3. Let ρ0, ρ1 ∈ M+(Ω). We want to show, with the help of Step 2,
that CK(ρ0, ρ1) ≤ CD(ρ0, ρ1). Let (ρ, ω, ζ) ∈ CE1

0(ρ0, ρ1) and for δ ∈]0, 1[ let

ρ̃δ = (1− δ)ρ+ δ (dx⊗ dt)|S , ω̃δ = (1− δ)ω, ζ̃δ = (1− δ)ζ

where S ⊃ Ω is a bounded set containing Ω +Bd(0, 1) and Bd(a, r) denotes
the open ball of radius r centered at point a in Rd. One has (ρ̃δ, ω̃δ, ζ̃δ)|Ω ∈
CE1

0(ρ̃δ0|Ω, ρ̃δ1|Ω) and by convexity,

JD(ρ̃δ, ω̃δ, ζ̃δ) ≤ JD(ρ, ω, ζ) .

Since ρ̃δ0|Ω ⇀∗ ρ0 and ρ̃δ1|Ω ⇀∗ ρ1 as δ → 0 and CK is weakly* lower
semicontinuous (Corollary 3.12), it is sufficient to prove JD(ρ̃δ, ω̃δ, ζ̃δ) ≥
CK(ρ̃δ0|Ω, ρ̃δ1|Ω) for proving JD(ρ, ω, ζ) ≥ CK(ρ0, ρ1). In order to alleviate
notations we shall now denote ρ̃δ, ω̃δ, ζ̃δ by just ρ, ω, ζ and the new marginals
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ρ̃δ0, ρ̃
δ
1 by ρ0, ρ1 (now supported on S ⊃ Ω). Up to a translation, we can

assume that 0 is in the interior of the set of points w.r.t. which Ω is star
shaped. Then [26, Theorem 5.3] tells us that the Minkowski gauge x 7→
inf{λ > 0 : x ∈ λΩ} is Lipschitz: let us denote by k ∈ R∗+ its Lipschitz
constant. We introduce the regularizing kernel rε(t, x) = 1

εd
r1

(
x
ε

)
1
ε r2

(
t
ε

)
where r1 ∈ C∞c (Bd(0, 1

2k )), r2 ∈ C∞c (B1(0, 1
2k )), ri ≥ 0,

∫
ri = 1, ri even

(i = 1, 2). We want to perform a smoothing procedure which, in some sense,
preserves the domain Ω because this is where f and c̃f are defined.

Let µ̄ = ((1+ε)−1ρ̄, (1+ε)−1ω, ζ) where ρ̄ is a measure on [−ε, 1+ε]×S
which is worth ρ on [0, 1]×S, ρ0⊗dt on [−ε, 0[×S and ρ1⊗dt on ]1, 1+ε]×S
(while ω, ζ are always implicitely extended by 0). Then define

µε
def.
= T#(µ̄ ∗ rε)|[0,1]×Ω,

where T : (t, x) 7→ ((1 + ε)−1(t+ ε/2), (1 + ε)−1x) is built in such a way that
the image of the time segment [−ε/2, 1+ε/2] is [0, 1]. Furthermore, since the
Minkowski gauge of Ω is k-Lipschitz, the image of Ωε def.

= Ω+Bd(0, ε/k) by T
is included in Ω. Now, by the smoothing and scaling properties in Proposition
2.2, it holds µε ∈ CE1

0(ρε0, ρ
ε
1) for some smoothed marginals (ρε0, ρ

ε
1).

Notice that ρε0 ⇀∗ ρ0|Ω and ρε1 ⇀∗ ρ1|Ω when ε→ 0 since these measures
are the evaluations of µ̄ ∗ rε at time −ε/2 and 1 + ε/2, respectively (also
contracted in space by a factor 1 + ε and restricted to Ω). Moreover, the
vector fields ωεt /ρεt and ζεt /ρ

ε
t are well-defined, smooth, bounded functions

on [0, 1] × Ω because ρε has a density bounded from below by a positive
constant whenever ε/k < 1 (so that Ωε ⊂ S). Therefore, by Step 2,

JD(µε) ≥ CK(ρε0, ρ
ε
1).

On the other hand, for any ε′ > 0, one has

JD(µε) =

∫ 1

0

∫
Ω
f(y, µ

ε

|µε|)d|µ
ε|(s, y)

(1)
=

∫ 1+ε/2

−ε/2

∫
Ωε

f((1− ε)y, µ̄∗rε|µ̄∗rε|)d|µ̄ ∗ rε|(s, y)

(2)

≤
∫ 1+ε/2

−ε/2

∫
Ωε

d|µ̄|(t, x)

∫
R1+d

dsdyf((1− ε)y, µ̄|µ̄|(t, x)) · rε(s− t, y − x)

(3)
=
∑
i

∫ 1

0

∫
Ω

d|µ̄|(t, x)

∫
R1+d

dsdyf̃i(
µ̄
|µ̄|(t, x))λi((1− ε)y)rε(s− t, y − x)

(4)

≤
∫ 1

0

∫
Ω

(1 + ε′)f(x, µ̄|µ̄|)d|µ̄|(t, x)
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where were used (1) the change of variable formula, (2) the convexity and
homogeneity of f , (3) assumption (C1) (which also garanties the integrability
of each f̃i) assumed on f and (4) the continuity of the strictly positive
factors (λi)i, if for a given ε′ > 0, one choses ε small enough. Therefore
JD(µ̄) ≥ JD(µε)(1 + ε′)−1. But by convexity and homogeneity, JD(µ̄) ≤
(1 + ε)−1((1− ε)JD(ρ, ω, ζ) + εJD(ρ, ω, 2ζ)). By the “doubling” assumption
(C2) on f , the term JD(ρ, ω, 2ζ) is finite if JD(ρ, ω, ζ) is finite and one has

CK(ρε0, ρ
ε
1) ≤ 1 + ε′

1 + ε
((1− ε)JD(ρ, ω, ζ) + εJD(ρ, ω, 2ζ)) .

Letting ε′ and ε go to 0, using the lower semicontinuity of CK and taking the
infimum, one recovers in the end CK(ρ0|Ω, ρ1|Ω) ≤ JD(ρ, ω, ζ) as desired.

Lemma 4.4 (Atomic approximation of semi-couplings). Let µ ∈ M+(Ω)
and ν ∈ M+(Ω). If c is a continuous cost function, then there exists a
sequence of finitely atomic measures (γ

(n)
0 ) and (γ

(n)
1 ) that weakly converge

to an optimal pair of semi-couplings for CK(µ, ν) and such that

lim
n→∞

JK(γ
(n)
0 , γ

(n)
1 ) = CK(µ, ν).

Proof. Let (fγ, gγ) be an optimal pair of semi-couplings for CK(µ, ν), where
γ ∈ ω+(Ω2) and f, g ∈ L1(γ). Let (B

(n)
i , (xi, yi)

(n))i∈I be sequence of fi-
nite pointed partitions of Ω2 such that limn→∞maxi∈I diam B

(n)
i = 0. We

define the discrete approximations γ̄(n)
0

def.
= T

(n)
# (fγ) and γ̄

(n)
1

def.
= T

(n)
# (gγ)

where T (n) : Ω2 → Ω2 maps all points in B
(n)
i to (xi, yi)

(n). Also, denote
(Proj0)#γ̄

(n)
0 = µn and (Proj1)#γ̄

(n)
1 = νn. It is clear that the discretized

semi-couplings weakly converge to (fγ, gγ). Moreover, for ε > 0, there exists
n ∈ N such that for all i ∈ I, by Jensen inequality, and since c is continuous,
uniformly on (X × [0, 1])× (Y × [0, 1]),

c(x
(n)
i , γ̄

(n)
0 (B

(n)
i ), y

(n)
i , γ̄

(n)
1 (B

(n)
i )) ≤ εmax{γ̄(n)

0 (B
(n)
i ), γ̄

(n)
1 (B

(n)
i )}

+

∫
B

(n)
i

c(x, f(x, y), y, g(x, y))dγ(x, y)

By integrating on the whole domain, one has

JK(γ̂
(n)
0 , γ̂

(n)
1 ) ≤ ε · (µ(X) + ν(Y )) + Ch(µ, ν)

and the result follows because ε can be arbitrarily small.
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5 Examples

In this section we discuss some examples which fit into the framework devel-
oped in sections 3 and 4. Optimal partial transport is first treated and then
the motivating example: the Wasserstein-Fisher-Rao metric. In this section,
Ω is a convex compact set in Rd with nonempty interior.

5.1 Optimal Partial Transport

In our first example, we consider infinitesimal costs of the form

f : (ρ, ω, ζ) 7→


1
p
|ω|p
ρp−1 + δ|ζ| if ρ > 0

δ|ζ| if ρ = |ω| = 0

+∞ otherwise .
(5.1)

which satisfies the conditions of Definition 2.3 and Assumptions (C1-2).
These assumptions also allow for a continuous dependency of δ in x although
we do not consider it here for simplicity. We first compute the minimal path
cost associated to this infinitesimal cost.

Proposition 5.1 (Minimal path cost). Let (x0,m0) and (x1,m1) be points
in Ω× R+. The minimal path cost associated to the infinitesimal cost (5.1)
is

cf (x0,m0, x1,m1) = min

(
|x1 − x0|p

p
, 2δ

)
·min(m0,m1)+δ|m1−m0|. (5.2)

It is already sublinear in (m0,m1) for all (x0, x1) ∈ Ω2.

Proof. First, for any absolutely continuous path (x,m) we denote by m̄ =
mint∈[0,1]m(t) its minimum mass. It holds∫ 1

0
f(m(t),m(t)x′(t),m′(t))dt =

∫ 1

0

1

p
|x′(t)|pm(t)dt+ δ

∫ 1

0
|m′(t)|dt

≥ m̄
∫ 1

0

1

p
|x′(t)|pdt+ δ(|m0 − m̄|+ |m1 − m̄|)

≥ c(x0,m0, x1,m1) .

For the opposite inequality, let us build a minimizing sequence. In the case
where |x0 − x1|p/p ≤ 2δ, we divide the time interval into three segments
[0, ε], [ε, 1 − ε] and [1 − ε, 1] and build an absolutely continuous trajectory
by making pure variations of mass (or staying on place) in the first and
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third segments, and constant speed transport of the mass m̄ = min(m0,m1)
during the second segment. This way, we obtain that the right-hand side of
(5.2) is upper bounded by

|m1 −m0|+ lim
ε→0

∫ 1−ε

ε

1

p
|x′(t)|pm̄dt = c(x0,m0, x1,m1) .

In the case |x0 − x1|p/p ≥ 2δ, one obtains the same inequality by building
a similar path, but transporting only an amount ε of mass in the second
segment.

From this explicit minimal path cost, we obtain a semi-coupling formu-
lation for CD. We explain below how it is related to the problem of optimal
partial transport.

Theorem 5.2 (Recovering optimal partial transport). For (ρ0, ρ1) ∈M+(Ω),
and considering the dynamic unbalanced optimal transport cost CD associated
to the infinitesimal cost f from (5.1), one has

CD(ρ0, ρ1) = δ(ρ0(Ω)+ρ1(Ω))+ inf
γ∈Γ≤(ρ0,ρ1)

∫
Ω2

(|x1 − x0|p/p− 2δ) dγ (5.3)

where the set of subcouplings Γ≤(ρ0, ρ1) is the subset ofM+(Ω2) such that
the first and second marginals are upper bounded by ρ0 and ρ1, respectively.

Proof. Just for this proof, let us denote by C̃ the right hand side term.
By Theorem 4.3, CD admits a semi-coupling formulation involving the sub-
linear cost c̃f from equation (5.2). Let us consider optimal semi-couplings
(f0γ, f1γ) where γ ∈ M+(Ω2) and f0, f1 ∈ L1(γ). Let γ̄ = (f0 ∧ f1)γ̄|D
where D = {(x, y) ∈ Ω2 ; |y − x|p/p ≤ 2δ}. It holds γ̄ ∈ Γ≤(ρ0, ρ1) and

CK(ρ0, ρ1) =

∫
Ω2

c(x0, f0(x0, x1)), x1, f1(x0, x1))dγ(x0, x1)

=

∫
Ω2

1

p
|x1 − x0|pdγ̄ + δ|γ0 − γ̄|(Ω2) + δ|γ1 − γ̄|(Ω2)

= δρ0(Ω) + δρ1(Ω) +

∫
Ω2

(
1

p
|x1 − x0|p − 2δ

)
dγ̄ ≥ C̃(ρ0, ρ1).

For the opposite inequality, remark that the infimum defining C̃ is unchanged
by adding the constraint that the sub-coupling γ ∈ Γ≤(ρ0, ρ1) is concentrated
on the set D. For such a plan, let µi = ρi− (Proji)#γ ∈M(Ω) for i ∈ {0, 1}
and define the pair of semi couplings

γi = γ + diag#(µ0 ∧ µ1) + diag#(µi − µ0 ∧ µ1), i ∈ {0, 1},
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where diag : x 7→ (x, x) maps Ω to the diagonal in Ω2. One has

JK(γ0, γ1) = δρ0(Ω) + δ|ρ1|(Ω) +

∫
Ω2

(
1

p
|x1 − x0|p − 2δ

)
dγ ,

and it follows CD(ρ0, ρ1) ≤ C̃(ρ0, ρ1).

The minimization problem over subcouplings introduced in Theorem 5.2
is a formulation of the optimal partial transport problem, a variant of optimal
transport studied in [6, 9]. It is proved in [6] that for any choice of δ > 0
corresponds the choice of m(δ) such that 0 ≤ m(δ) ≤ min{ρ0(Ω), ρ1(Ω)} for
which the minimizers of (5.3) and the minimizers of

min

{∫
Ω2

|y − x|pdγ(x, y) ; γ ∈ Γ≤(ρ0, ρ1), γ(Ω2) = m(δ)

}
are the same. The variable δ is the Lagrange multiplier for the constraint of
total mass and corresponds to the maximum distance over which transport
can occur (this does not mean, however, that optimal plans for (5.3) are
obtained by simply restricting classical optimal transport plans to a set of
bounded distance from the diagonal). The function m(δ) cannot be inverted
in general (think of atomic measures) but it is proved in [6, Cor. 2.11] that
it can be inverted if ρ0 or ρ1 is absolutely continuous.

Let us finally show that CD, and thus optimal partial transport, admits
a formulation as an optimal transport problem with relaxed marginal con-
straints. This show a close link between the problems treated in this section
and the problems considered in [23, 22] (although definitions differ slightly).

Proposition 5.3. For ρ0, ρ1 ∈M+(Ω), one has

CD(ρ0, ρ1) = inf
γ∈M+(Ω2)

∫
Ω2

1

p
|y − x|pdγ(x, y)

+ δ|ρ0 − (Proj0)#γ|(Ω) + δ|ρ1 − (Proj1)#γ|(Ω) (5.4)

Proof. In this proof, we denote by C̃(ρ0, ρ1) the infimum on the right-hand
side. Given Theorem 5.2, it is sufficient to show that the value of the infimum
is unchanged when adding the constraint (Proji)#γ ≤ ρi for i ∈ {0, 1}.
To prove this, consider γ ∈ M+(Ω2) and build γ̄ such that γ̄ ≤ γ and
(Proj0)#γ̄ = ρ0 ∧ (Proj0)#γ. By construction, one has

|ρ0 − (Proj0)#γ| − |ρ0 − (Proj0)#γ
∗| = |(Proj0)#γ − (Proj0)#γ

∗|
= |γ − γ∗|
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and

|ρ1 − (Proj1)#γ| − |ρ1 − (Proj1)#γ
∗| ≥ −|(Proj1)#γ − (Proj1)#γ

∗|
= −|γ − γ∗|.

By denoting F the functional in (5.4) written as a function of a coupling, it
holds

F (γ)− F (γ∗) ≥
∫

Ω2

(|y − x|p/p)d(γ − γ∗) ≥ 0 .

A similar truncation procedure for the other marginal leads to the result.

We conclude the study of this model with an instantiation of duality
formulas, which are direct corollaries of Propositions 2.7 and 3.11.

Proposition 5.4. We have the dual formulation

CK(ρ0, ρ1) = sup
(φ,ψ)∈C(Ω)2

∫
Ω
φ dρ0 +

∫
Ω
ψ dρ1

subject to, for all (x, y) ∈ Ω2, φ(x) + ψ(y) ≤ 1
p |y − x|

p and φ(x), ψ(y) ≤ δ.
Equivalently,

CK(ρ0, ρ1) = sup
ϕ∈C1([0,1]×Ω)

∫
Ω
ϕ(1, ·)dρ1 −

∫
Ω
ϕ(0, ·)dρ0 ,

subject to |ϕ| ≤ δ and ∂tϕ+ p−1
p |∇ϕ|

p
p−1 ≤ 0 .

5.2 Static Formulation of the Wasserstein-Fisher-Rao metric

Our second and last example deals with the case of the metric WFR.

Definition 5.5 (WFR metric). For a parameter δ ∈]0,+∞[ consider the
convex, positively homogeneous, l.s.c. function

f : R× Rd × R 3 (ρ, ω, ζ) 7→


1
2
|ω|2+δ2 ζ2

ρ if ρ > 0 ,

0 if (ρ, ω, ζ) = (0, 0, 0) ,

+∞ otherwise,

(5.5)

and define, for ρ0, ρ1 ∈M+(Ω),

WFR(ρ0, ρ1)2 def.
= inf

(ρ,ω,ζ)∈CE10(ρ0,ρ1)

∫
[0,1]×Ω

f
(
ρ
λ ,

ω
λ ,

ζ
λ

)
dλ (5.6)

where λ ∈ M+([0, 1] × Ω) chosen such that ρ, ω, ζ � λ. Due to the 1-
homogeneity of f the integral does not depend on the choice of λ.
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We now show that WFR admits a static formulation, which belongs to
the class of models introduced in Section 3. For this model, the distance
between weighted Dirac measures WFR(m0δx0 ,m1δx1)2 has been computed
in [7] and is given by

c(x0,m0, x1,m1) = 2δ2
(
m0 +m1 − 2

√
m0m1 · cos(|x0 − x1|/(2δ)) .

)
(5.7)

where cos : z 7→ cos(|z| ∧ π
2 ). Note that it is possible to compute directly

the minimal path cost for this model and one obtains (5.7) but where the
definition of cos is replaced by cos(|z| ∧ π). This shows that the convex
regularization of the cost is a crucial step in Theorem 4.3.

Theorem 5.6 (Static formulation of the metric). Choosing the cost function
(5.7), it holds

WFR2(ρ0, ρ1) = min
(γ0,γ1)∈Γ(ρ0,ρ1)

JK(γ0, γ1) . (5.8)

Proof. This is a particular case of Theorem 4.3: it is clear that when this
theorem holds then the convex relaxation of the minimal path cost equals
the distance between pairs of weighted Dirac measures.

Remark 5.7. This theorem can be reformulated as

1

2δ2
WFR2(ρ0, ρ1) = ρ0(Ω) + ρ1(Ω) +

inf
(γ0,γ1)∈Γ(ρ0,ρ1)

−2

∫
|y−x|<π

cos(|y − x|/(2δ))d(
√
γ0γ1)(x, y) .

where √γ0γ1
def.
=
(
γ0
γ
γ1
γ

) 1
2
γ for any γ such that γ0, γ1 � γ.

Corollary 5.8 (Dual formulations). It holds

1

2δ2
WFR2(ρ0, ρ1) = sup

(φ,ψ)∈C(Ω)2

∫
Ω
φ(x)dρ0 +

∫
Ω
ψ(y)dρ1

subject to, ∀(x, y) ∈ Ω2: φ(x) ≤ 1 , ψ(y) ≤ 1 ,

(1− φ(x))(1− ψ(y)) ≥ cos2 (|x− y|/(2δ)) .

or, by the change of variables u = − log(1− φ) and v = − log(1− ψ):

1

2δ2
WFR2(ρ0, ρ1) = sup

(u,v)∈C(Ω)2

∫
Ω

(1− e−u(x))dρ0 +

∫
Ω

(1− e−v(y))dρ1

subject to, ∀(x, y) ∈ Ω2: u(x) + v(y) ≤ − log
(
cos2 (|x− y|/(2δ))

)
.
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Proof. By direct computations we find that c(x, ·, y, ·) = ι∗Q(x,y) with

Q(x, y) =
{

(a, b) ∈ R2 : a, b ≤ 1 and (1− a)(1− b) ≥ cos2
(
|y − x|/(2δ) )}

and apply Proposition 3.11.

For the sake of completeness, we state and prove an “optimal entropy-
transport” formulation of the WFR metric1. It is obtained as the dual prob-
lem of the second formula in Corollary 5.8.

Corollary 5.9 (Optimal Entropy-Transport formulation). The WFR metric
admits an “optimal entropy-transport” formulation :

1

2δ2
WFR2(ρ0, ρ1) = min

γ∈M+(Ω2)

{∫
Ω2

c`(x, y)dγ(x, y)

+ KL ((Proj0)#γ|ρ0) + KL ((Proj1)#γ|ρ1)
}

where c`(x, y)
def.
= − log

(
cos2 (|x− y|/(2δ))

)
and

KL(µ|ν)
def.
=

{∫
Ω(s log s− s+ 1)dν if µ� ν and µ

ν = s

+∞ otherwise.

Moreover, the minimum is attained.

Proof. Let us compute the dual of the second formulation of Corollary 5.8.
It can be rewritten

sup
(u,v)∈C(Ω)2

−F0(−u)− F1(−v)−G(A(u, v))

where A(u, v)(x, y)
def.
= u(x) + v(y) for all (x, y) ∈ Ω2, Fi(u)

def.
=
∫

(eu − 1)dρi

and G(w)
def.
= 0 if w(x, y) ≤ c`(x, y) for all x, y and +∞ otherwise. Note

that c` is nonnegative : it is thus easy to find a couple (u, v) ∈ C(Ω)2 such
that G is continuous at A(u, v) (take for instance u = v = −1). Thus the
Fenchel-Rockafellar Theorem applies, and there is strong duality with

min
γ∈M(Ω2)

F ∗0 ((Proj0)#γ) + F ∗1 ((Proj1)#γ) +G∗(γ) .

since the adjoint operator of A : C(Ω)2 → C(Ω2) is the operatorM(Ω2)→
M(Ω)2 which maps a measure to its two marginals. Moreover, by direct com-
putations, G∗(γ) = ι≥0(γ) +

∫
c`dγ. Finally, the expressions F ∗0 = KL(·|ρ0)

and F ∗1 = KL(·|ρ1) are justified by Lemma 2.9.
1this formulation was not present in the preliminary version of this article and first

appeared in [16].
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5.3 Γ-convergence of Static WFR

In [7] the limit of the growth penalty parameter δ → ∞ of WFR is studied
and related to classical optimal transport. Here we give the corresponding
result for the static problems in terms of Γ-convergence [5]. Recall that this
implies both convergence of the optimal values as well as convergence of
minimizers. We now denote by cδ the cost defined in (5.7) to emphasize its
dependency on δ.

Theorem 5.10 ((Almost) Classical OT as Limit of WFR). Consider the
following two generalized static optimal transport functionals:

Jδ(γ0, γ1) =

∫
Ω2

cδ

(
x, γ0γ , y,

γ1
γ

)
dγ(x, y)− 2 δ2(

√
γ0(Ω2)−

√
γ1(Ω2))2

(5.9)

where as before γ ∈ M+(Ω2) is any measure such that γ0, γ1 � γ and the
integral does not depend on γ due to 1-homogeneity of cδ.

J∞(γ0, γ1) =


0 if γ0 = 0 or γ1 = 0 ,∫

Ω2 |x− y|2dγ0(x, y) ·
√
α

2 if γ1 = αγ0 for some α > 0 ,

∞ otherwise.
(5.10)

Then Jδ Γ-converges to J∞ as δ →∞.

Remark 5.11. One has limδ→∞WFR(ρ0, ρ1) =∞ if ρ0(Ω) 6= ρ1(Ω). Con-
sequently, to properly study the limit, we subtract the diverging terms in (5.9).
Conversely, we slightly modify the classical OT functional, to assign finite
cost when the two couplings are strict multiples of each other. The corre-
sponding optimization problem is solved by computing the optimal transport
plan between normalized marginals and then multiplying by the geometric
mean of the marginal masses. The above result implies

lim
δ→∞

WFR(ρ0, ρ1)2 − 2δ2(
√
ρ0(Ω)−

√
ρ1(Ω))2

= W2

(
ρ0

ρ0(Ω) ,
ρ1

ρ1(Ω)

)2
·
√
ρ0(Ω)ρ1(Ω)

where W2 denotes the standard 2-Wasserstein distance w.r.t. the transport
cost function c(x, y) = |x−y|2

2 . In particular, if ρ0(Ω) = ρ1(Ω) then

lim
δ→∞

WFR(ρ0, ρ1) = W2(ρ0, ρ1).
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The proof uses the following Lemma.

Lemma 5.12 (Sqrt-Measure). Let A ⊂ Rn be a compact set. The function

M+(A)2 3 µ = (µ1, µ2) 7→ −√µ1 · µ2(A) (5.11)

is weakly* l.s.c. and bounded from below by −
√
µ1(A) ·

√
µ2(A). The lower

bound is only attained, if µ1 = 0 or µ2 = 0 or µ1 = α · µ2 for some α > 0.

Proof. With f(x) = (
√
x1 −

√
x2)2/2 and a reference measure ν ∈ M+(A)

with µ� ν we can write

−√µ1 · µ2(A) =

∫
A
f
(µ
ν

)
dν − µ1(A)/2− µ2(A)/2

Since f is 1-homogeneous, the evaluation does not depend on the choice
of ν. As f is convex, l.s.c., bounded from below, A is bounded, and total
masses converge, lower semi-continuity of the functional now follows from [1,
Thm. 2.38] (see proof of Proposition 3.4 for adaption to Ω closed).

For the lower bound, let µ1 = λ · µ2 + µ1,⊥ be the Radon-Nikodým
decomposition of µ1 w.r.t. µ2. Then have

−√µ1 · µ2(A) = −
∫
A

√
λ dµ2 ≥ −

(∫
A
λ dµ2 · µ2(A)

)1
2
≥ − (µ1(A) · µ2(A))

1
2

where the first inequality is due to Jensen’s inequality, with equality only if
λ is constant. The second inequality is only an equality if µ1,⊥ = 0.

Proof of Theorem 5.10. Lim-Sup. For every pair (γ0, γ1) a recovery se-
quence is given by the constant sequence (γ0, γ1)n∈N. The cases γi = 0 for
i = 0 or 1, and γ1 6= αγ0 for every α > 0 are trivial. Therefore, let now
γ1 = αγ0 for some α > 0. We find

Jδ(γ0, α γ0) =

∫
Ω2

2 δ2
[
(1 + α)− 2

√
α cos(|x− y|/(2δ))

]
dγ0(x, y)

− 2 δ2 γ0(Ω2) (1−
√
α)2

Now use cos(z) ≥ 1− z2/2 to find:

≤
∫

Ω2

4 δ2√α |x− y|
2

8 δ2
dγ0(x, y)

= J∞(γ0, γ1)
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Lim-Inf. For a sequence of couplings (γ0,k, γ1,k)k∈N converging weakly*
to some pair (γ0,∞, γ1,∞) we now study the sequence of values Jk(γ0,k, γ1,k).
Note first, that Jk is weakly* l.s.c. since the integral part is l.s.c. (cf. Propo-
sition 3.4) and the second term is continuous (total masses converge).

Since Ω is compact, there is some N1 ∈ N such that for k > N1, we have

1− z2/2 ≤ cos(z) ≤ 1− z2/2 + z4/24 for z = |x− y|/(2 k), x, y ∈ Ω .

Let now k > N1, (γ0, γ1) ∈M+(Ω2)2 and γ ∈M+(Ω2) such that (γ0, γ1)�
γ. Denote A def.

=
√
γ0(Ω2)−

√
γ1(Ω2). Then

Jk(γ0, γ1) = 2 k2

(∫
Ω2

(√
γ0
γ −

√
γ1
γ

)2
dγ −A2

)
+ 4 k2

∫
Ω2

|x− y|2

8 k2

√
γ0
γ
γ1
γ dγ(x, y)

− I · 4 k2

∫
Ω2

|x− y|4

24 · (2 k)4

√
γ0
γ
γ1
γ dγ(x, y)

for some I ∈ [0, 1].
Since Ω is bounded, by means of Lemma 5.12 and since the total masses

of γi,k, i = 0, 1 are converging towards the total masses of γi,∞ as k → ∞,
there is a constant C > 0 and some N2 ≥ N1 such that the coefficient for I
in the third line can be bounded by C/k2 for k > N2 for when calling with
arguments (γ0,k, γ1,k).

For the first line we write briefly 2 k2 F (γ0, γ1). From Lemma 5.12 we find
that F is weakly* l.s.c., F ≥ 0 and F (γ0, γ1) = 0 if and only if (γ0, γ1) ∈ S
with

S =
{

(γ0, γ1) ∈M+(Ω2)2 : γ0 = 0 or γ1 = 0 or γ1 = α · γ0 for some α > 0
}
.

It follows that for N2 < k1 < k2 one has

Jk2(γ0,k2 , γ1,k2) = Jk1(γ0,k2 , γ1,k2) + 2 (k2
2 − k2

1)F (γ0,k2 , γ1,k2) + I · C/k2
1

for some I ∈ [−1, 1]. Now consider the joint limit:

lim inf
k→∞

Jk(γ0,k, γ1,k) ≥ lim inf
k→∞

Jk1(γ0,k, γ1,k) + lim inf
k→∞

2(k2 − k2
1)F (γ0,k, γ1,k)− C/k2

1

≥ Jk1(γ0,∞, γ1,∞) + 2(k2
2 − k2

1)F (γ0,∞, γ1,∞)− C/k2
1

for any N2 < k1 < k2 (by using weak* l.s.c. of Jk1 and F and non-negativity
of F ). Since Jk1 > −∞ and k2 can be chosen arbitrarily large, we find

lim inf
k→∞

Jk(γ0,k, γ1,k) =∞ for (γ0,∞, γ1,∞) /∈ S .
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By reasoning analogous to the lim-sup case (adding the z4 term in the cos-
expansion to get a lower bound and bounding its value as above) we find

lim inf
k→∞

Jk(γ0,k, γ1,k) ≥ J∞(γ0,∞, γ1,∞) for (γ0,∞, γ1,∞) ∈ S .

Conclusion and Perspectives

In this paper, we presented a unified treatment of unbalanced optimal trans-
port that allows for both static and dynamic formulations. Our key findings
are (i) a new class of dynamic unbalanced optimal transport problems, (ii) a
new class of static optimal transport formulations involving semi-couplings,
(iii) an equivalence between these static formulations and a class of dynamic
formulations. We believe that a key aspect of this work is that the pro-
posed static formulation opens the door to a new class of numerical solvers
for unbalanced optimal transport. These solvers should leverage the specific
structure of the cost c considered for each application, a striking example
being the WFR cost (5.7).
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